本文提出了一个新的联邦学习框架和算法,利用跨客户的分布式计算能力,在线性设置中高效地降低问题维度。实验证明该方法获得了与地面实况表示的线性收敛,并获得接近最优样本复杂度。此外,该方法在异构数据的联邦环境中相对于个性化联邦学习方法有经验改进。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: