基于区域方法的机器学习和物理约束神经网络在加热炉中的应用

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

本研究比较了不同炉环境下机器学习和深度学习方法的温度预测性能。发现深度学习方法在推理时间和模型性能方面具有综合平衡。为了增强深度学习模型的外域概括能力,提出了一种基于物理知识的神经网络(PINN),适用于任何标准的机器学习回归模型。该研究对实现基础工业向工业 4.0 的过渡具有重要意义。

原文中文,约300字,阅读约需1分钟。
阅读原文