BriefGPT - AI 论文速递
·
2023-11-01T00:00:00Z
IBADR: 一个迭代的认知偏差数据修正框架用于消除 NLU 模型的偏见
💡
原文中文,约300字,阅读约需1分钟。
该文介绍了一个名为“Nbias”的框架,用于检测和消除文本数据中的偏见,确保数据的公正和道德使用。该框架包括数据层、语料库构建、模型开发层和评估层,并应用了基于transformer的标记分类模型识别具有独特命名实体的偏见词语/短语。通过定量和定性评估的混合方法,该方法能够取得1%至8%的准确率改进,并促进了文本数据的公正和道德使用。