本论文提出了一种基于贝叶斯推理的自适应辍学方法(FedBIAD),通过将局部模型权重转化为概率分布,并根据本地训练损失趋势辍掉部分权重行,从而在减少通信成本的同时提高准确性。实验证明该方法在非独立同分布数据上可以提高2.41%的准确率,并最多缩短72%的训练时间。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: