通过自动神经分布约束来缓解后门问题

BriefGPT - AI 论文速递 BriefGPT - AI 论文速递 ·

该论文研究了后门攻击的特性和缓解方法,发现成功攻击会改变后门触发实例的内部层激活分布。作者提出了一种高效的方法,通过逆向工程的触发器来纠正分布变化,实现后期训练的后门缓解。该方法不改变DNN的可训练参数,但缓解性能更好。同时,它还能有效检测带有触发器的测试实例,帮助发现恶意攻击。

原文中文,约300字,阅读约需1分钟。
阅读原文