这项研究扩展了学习量子哈密顿量和可观测量基态期望值的方法,针对长程相互作用的系统。研究发现,对于维度两倍以上的幂次衰减相互作用,可以实现高效率,但误差依赖会恶化到指数级。学习算法可以降低样本复杂度,特别是在具有周期性边界条件的系统中。通过模拟实践,证明了这种高效的刻度。同时提供了全局可观测量期望值浓度的分析,提高了预测准确性。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: