基于提示的个性化联邦学习用于医学视觉问答
原文中文,约400字,阅读约需1分钟。发表于: 。我们提出了一种新颖的基于提示的个性化联邦学习(pFL)方法,以解决传统医学视觉问答(VQA)方法中的数据异质性和隐私问题。具体而言,我们将来自不同器官的医学数据集视为客户,并使用 pFL 为每个客户训练个性化的基于 Transformer 的 VQA 模型。为了解决以前的 pFL...
本文提出了一种基于提示的个性化联邦学习(pFL)方法,用于解决医学视觉问答中的数据异质性和隐私问题。通过将不同器官的医学数据集视为客户,并使用pFL为每个客户训练个性化的基于Transformer的VQA模型。此方法通过引入小的可学习参数提示,解决了以前pFL方法中客户间通信的高计算复杂性。同时,还引入了一个可靠性参数,以防止低性能和不相关客户的负面影响。对各种异构医学数据集进行了广泛评估,证明了该方法的有效性。