该研究提出了一种创新框架,将局部流形学习与对比学习相结合,用于无参考图像质量评估。该方法在多个裁剪中识别出最具视觉显著性的裁剪,并将其他来自同一图像的裁剪作为正类进行聚类,将来自不同图像的裁剪作为负类以增加类间距离。此外,还采用了互相学习的框架,提高了模型的自适应学习和视觉显著性区域识别能力。在7个标准数据集中,该方法表现出更好的性能。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: