研究提出了一种层级压缩方法,通过结构化剪枝技术如LLM-Pruner、Compresso和FLAP,解决大型语言模型在部署时的参数和计算开销问题。这些方法提升了模型性能和效率,适用于多任务求解和语言生成,减少存储需求并提高推理速度,支持自然语言处理应用的普及。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: