利用相关信息增益的改进 RAG 算法
原文中文,约300字,阅读约需1分钟。发表于: 。大型语言模型(LLM)的记忆扩展常常通过检索增强的生成(RAG)实现,该方法将来自更大记忆的文本插入 LLM 的上下文窗口。我们提出了一种基于相关信息增益的新型简单优化指标,通过优化这个指标,多样性自然地从我们的系统中出现。当用作 RAG 系统的检索组件的替代品时,这种方法在检索增强生成基准(RGB)的问答任务中展现出了最先进的性能,超过了直接优化相关性和多样性的现有指标。
Retrieval-Augmented Generation (RAG)是一种合并检索方法和深度学习技术的方法,旨在通过动态整合最新的外部信息解决大型语言模型(LLMs)的静态限制,并改进LLMs输出的准确性和可靠性。该研究将RAG分为四个类别,并提供了详细的视角和评估方法,同时介绍了其演进和领域的进展。该论文还提出了面临的挑战和未来的研究方向,旨在巩固现有的RAG研究,明确其技术基础,并突出其扩展LLMs的适应性和应用潜力。