高维奖励的离策略强化学习
BriefGPT - AI 论文速递 · 2024-08-14T00:00:00Z
该论文研究了具有线性函数逼近的离线强化学习问题,并提出了一种计算效率高的算法。该算法在数据集的单策略覆盖条件下成功,输出的策略价值至少等于数据集覆盖良好的任何策略的价值。算法在固有贝尔曼误差为0的情况下提供了第一个保证,并且在固有贝尔曼误差为正值的情况下,算法的次最优误差与固有贝尔曼误差的平方根成比例。该算法的下界与强化学习在错误建模情况下的其他设置形成对比。
原文中文,约400字,阅读约需1分钟。