无监督领域适应结构搜索与自我训练用于地表覆盖图制作
原文约200字/词,阅读约需1分钟。发表于: 。通过将马尔可夫随机场神经架构搜索(MRF-NAS)与自训练无监督域适应(UDA)结合为单一框架,本研究在有限的计算预算下为土地覆盖映射任务搜索出高效且有效的轻量级神经网络,该网络在 OpenEarthMap 和 FLAIR#1 这两个近期数据集上表现出了令人满意的性能。
深度学习在多个领域表现优异,但仅依靠标记数据训练模型不能保证在目标领域仍有出色表现。无监督域自适应通过利用源领域标记数据和目标领域未标记数据解决该问题,并在自然图像处理、自然语言处理等领域取得令人期待的结果。该文比较了该领域方法和应用,强调了当前方法的不足和未来研究方向。