绕过指数依赖:循环变压器通过多步梯度下降有效学习上下文
研究发现,Transformer在简单任务上表现良好,但在复杂任务上性能下降。无注意力模型在某些任务上表现相似。提供教学序列时,Transformer学习更高效,并能自适应选择算法。预训练的大语言模型在新任务上表现出色,与最近邻基线相当。
原文中文,约600字,阅读约需2分钟。
研究发现,Transformer在简单任务上表现良好,但在复杂任务上性能下降。无注意力模型在某些任务上表现相似。提供教学序列时,Transformer学习更高效,并能自适应选择算法。预训练的大语言模型在新任务上表现出色,与最近邻基线相当。