无记忆多模态异常检测:基于学生-教师网络与有符号距离学ä¹
BriefGPT - AI 论文速递 · 2024-09-09T00:00:00Z
该论文研究了工业多模态异常检测任务,使用点云和RGB图像定位异常,并提出了一种新的框架。该框架学习将一个模态的特征映射到另一个模态的正常样本上,并通过观察特征和映射特征之间的不一致性来检测异常。实验证明该方法在检测和分割性能上优于先前的方法,并具有更快的推理速度和更低的内存占用。同时,提出了一种层裁剪技术,提高了内存和时间效率。
原文中文,约300字,阅读约需1分钟。