为语音识别启用差分隐私的联邦学习:基准测试、自适应优化器与梯度裁剪
While federated learning (FL) and differential privacy (DP) have been extensively studied, their application to automatic speech recognition (ASR) remains largely unexplored due to the challenges...
联邦学习(FL)与差分隐私(DP)在自动语音识别(ASR)中的应用尚待深入。本文通过逐层裁剪和梯度归一化技术,缓解了大模型在FL中面临的梯度异质性问题。实验结果表明,在强隐私保护下,FL与DP在用户规模达到数百万时是可行的,并且在不同规模下的字错误率有所改善。这为大模型的隐私保护FL算法设计提供了指导。
