隐私保护数据去重技术用于增强语言模型的联邦学习
原文中文,约400字,阅读约需1分钟。发表于: 。本研究提出了一种高效的隐私保护多方去重协议 (EP-MPD),通过利用两种新颖的私有集合交集协议,有效地在联邦学习中去重多个客户端的数据集,以平衡隐私和性能,并在大规模应用中取得显著的性能改进。
本文介绍了一个解决数据异构性和隐私保护挑战的联邦迁移学习框架,利用多个异构源数据集的信息增强目标数据集上的学习能力。提出了“联邦差分隐私”的概念,为每个数据集提供隐私保证。研究了一维均值估计、低维线性回归和高维线性回归三个统计问题。展示了联邦差分隐私是介于本地和中央模型差分隐私之间的中间隐私模型。强调了数据异构性和隐私在联邦学习中的基本成本和跨数据集的知识迁移的好处。