LastResort 在 SemEval-2024 任务 3 中:将多模态情感因果对提取作为序列标注任务探索

原文中文,约400字,阅读约需1分钟。发表于:

提出了一种基于句子标签和序列标签问题的模型,通过对话中涉及的多个模态(文本、音频和视觉模态)的独立话语以及导致情绪的相应话语来解决多模态情绪原因分析任务,并对使用不同编码器(包括 BiLSTM)的基准线进行了比较研究,并最终添加了 CRF 层以更有效地建模相邻话语之间的相互依赖关系,其在任务的官方排行榜上排名第 8,F1 得分为 0.1759。

本论文介绍了为SemEval-2024任务3开发的多模态情绪原因分析系统,通过集成文本、音频和视频等多种模态来捕捉人际对话中的情绪。系统采用Llama 2模型和GPT-4V、GPT 3.5进行情绪和原因预测、基于对话的视频描述和上下文学习。在比赛中获得第四名,实验证明该解决方案性能显著提升。

相关推荐 去reddit讨论
  1. 模块化:Mojo🔥 如何实现比 Python 快 35,000 倍的加速 – 第二部分
    在本博客文章中,我们将继续优化Mandelbrot集合问题,并将速度提高到Python的26,000倍。我们将分享使用的技术,并讨论Mojo的优势。第三部...
  2. 模块化:Mojo🔥 - 它终于来了!
    自从5月2日推出Mojo编程语言以来,已有超过120,000名开发者注册使用Mojo Playground,19,000名开发者在Discord和GitH...
  3. 模块化:Mojo🔥如何实现比Python快35,000倍的速度提升——第一部分
    本文介绍了Mojo编程语言在Mandelbrot集合问题上的性能优化,通过类型注释、严格模式和简化计算等方法,实现了46倍至89倍的速度提升。与NumPy...
  4. 模块化:Python程序员轻松入门Mojo🔥
    本文介绍了Mojo编程语言,从Python程序员的角度出发,通过一个简单的例子展示了Mojo的语法和性能优势。文章指出Mojo与Python语法相似,但在...
  5. 模块化:在Python🐍中使用Mojo🔥
    本文介绍了在Mojo中使用Python模块和包的方法,包括查找和加载模块和包、使用venv创建虚拟环境和使用Conda安装libpython。文章提供了示...
  6. Modular:我们筹集了1亿美元以改善全球开发者的AI基础设施
    Modular宣布获得1亿美元新融资,加速实现全球开发者AI基础设施愿景。他们的下一代AI开发者平台改善了AI的可编程性、可用性、可扩展性、计算效率和硬件...
  7. Modular:发布 MAX 开发者版预览
    Modular推出了Modular Accelerated Xecution (MAX)平台,旨在简化在不同硬件平台上部署AI模型。MAX包括先进的AI编...
  8. ACME的使用经验
    ACME是一个自动管理证书的程序,有多种实现,本文介绍了acme.sh的使用。安装、申请、安装证书、续签证书等步骤都有详细说明。在Windows环境下使用...
  9. 新 Mac 支持雷雳 5 了,但你真的需要它吗?
    USB-C是一种接口形状,可以与不同协议、速率和充电功率混搭。USB-C解决了线缆插入问题,但工作正常与否取决于支持的协议。USB-C线缆的兼容性还取决于...
  10. Meta 宣布推出 AI 驱动的视频生成器 Movie Gen
    Meta推出Movie Gen AI视频生成器,可通过文本生成高清视频并添加音效,还能编辑现有视频和图像。由于成本高和生成时间长,暂不公开发布。工具引发版...