机器学习增强的飞机降落调度在不确定情况下

本研究论文探讨了飞机延误问题,重点关注其对安全和经济损失的影响。为了缓解这些问题,提出了一种创新的机器学习增强的降落调度方法,旨在提高自动化和安全性。通过分析飞行到达延误的情景,发现了到达飞行时间持续的多峰分布和聚类。一种多阶段条件机器学习预测器增强了基于飞行事件的分离时间预测。机器学习预测结果被整合为安全约束,并在时间约束下使用整数线性规划求解旅行推销员问题。通过历史飞行记录和模型预测来处...

本研究论文提出了一种创新的机器学习增强的降落调度方法,通过分析飞行到达延误的情景,发现了到达飞行时间持续的多峰分布和聚类。使用整数线性规划求解旅行推销员问题,确保可靠性。实验证明,总降落时间平均减少了17.2%。

原文中文,约500字,阅读约需1分钟。发表于:
阅读原文