神经自动语音识别中的幻听:识别错误和幻听模型
原文中文,约400字,阅读约需1分钟。发表于: 。此研究报告探讨了深度神经网络产生的幻觉是一类输出错误,在自动语音识别中幻觉的定义为模型生成的转录与源话语在语义上无关,但仍然流畅和连贯,幻觉与模型产生的自然语言输出相似性带来了误导的危险,并影响系统的可信度。为了解决这个问题,作者提出了一种基于干扰的方法来评估自动语音识别模型在测试时易于产生幻觉,该方法不需要访问训练数据集。作者展示了这种方法有助于区分在基准词错误率相似的情况下产生幻觉和不产...
本研究探讨了深度神经网络产生幻觉的原因,并提出了一种基于干扰的方法来评估自动语音识别模型的易幻觉性。作者还研究了自动语音识别错误类型与数据集噪声类型之间的关系,并发现了诱导幻觉的方法。