半监督目标检测:从 CNN 到 Transformer 的进展综述
原文中文,约300字,阅读约需1分钟。发表于: 。本文综述了半监督学习在目标检测任务中的 27 种最新发展,从卷积神经网络到 Transformer,探讨了半监督学习的核心组件及其与目标检测框架的集成,包括数据增强技术、伪标签策略、一致性正则化和对抗训练方法,并对各种 SSOD 模型进行了详细的比较分析,评估其性能和架构差异。旨在引发对克服现有挑战和探索半监督学习在目标检测中新方向的研究兴趣。
本文综述了半监督学习在目标检测任务中的最新发展,包括核心组件、数据增强技术、伪标签策略、一致性正则化和对抗训练方法。对各种SSOD模型进行了比较分析,旨在引发对半监督学习在目标检测中新方向的研究兴趣。