单幅图像中的一切:大型多模态模型是图像学习器
原文中文,约400字,阅读约需1分钟。发表于: 。该论文介绍了一种新的上下文学习机制 ——In-Image Learning(I²L),将示范示例、视觉线索和指令结合到一张图像中,以增强 GPT-4V 的能力,并通过图像处理、理解和推理能力来整合所有信息,从而避免了复杂图像的文本描述不准确、位置示范示例灵活、输入负担减少、避免多张图像和冗长文本的输入限制等优势。通过引入自动策略选择适当的 ICL 方法,我们进一步整合了不同 ICL...
该论文介绍了一种新的上下文学习机制,In-Image Learning(I²L),通过将示范示例、视觉线索和指令结合到一张图像中,增强了GPT-4V的能力。实验结果表明,I²L在复杂多模态推理任务中有效,并对语言幻觉和视觉错觉有缓解作用。