本文介绍了一种在线学习算法,通过正则化路径的顺序随机逼近,收敛于再生核希尔伯特空间中的回归函数。通过选择增益或步长序列,可以生产出批量学习的最佳已知强收敛速率,并给出了弱收敛速率。通过偏差-方差分解,证明偏差包括逼近误差和漂移误差,方差来自样本误差,分析为反向鞍点型差分序列。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: