一种混合全卷积CNN-变换器模型用于内在可解释的医学图像分类
📝
内容提要
本研究解决了混合CNN-变换器模型在医学影像分类中可解释性不足的问题。我们提出了一种可设计可解释的混合全卷积CNN-变换器架构,能够生成直接反映模型决策过程的局部证据图,提升了模型的可解释性与性能。实验结果表明,该模型在医学图像分类任务中不仅预测性能达到最先进水平,还能在单次前向传播中提供类别特定的稀疏证据图。
➡️