AI入门系列 一种实用的Prompt工程: Agent Skill

AI入门系列 一种实用的Prompt工程: Agent Skill

💡 原文中文,约7500字,阅读约需18分钟。
📝

内容提要

本文探讨了Prompt工程的演变,强调Agent Skill的实用性。Prompt从简单输入发展为复杂工作流程,Agent Skill将其转化为可复用的工程资产,适用于高频迭代场景。作者的skills仓库和ChineseResearchLaTeX项目展示了如何优化开发和科研写作流程,提高效率。

🎯

关键要点

  • Prompt工程从简单输入演变为复杂工作流程,Agent Skill将其转化为可复用的工程资产。
  • Prompt的演化历程包括从zero-shot/few-shot到Chain-of-Thought(CoT)和ReAct等技术。
  • Agent Skill与MCP的区别在于,前者是流程层,后者是连接层。
  • Agent Skill在高频迭代场景中提供稳定的工作流,减少上下文遗忘与输出漂移。
  • 技能的最小可用形态包括SKILL.md、config.yaml、scripts和references。
  • 在科研写作中,ChineseResearchLaTeX项目强调模板和结构保护,适合长流程交付。
  • 有效的Skill应包括验收标准、警惕Prompt Injection和持续瘦身的原则。
  • Prompt工程的演化是人机协作的演变,未来积累的将是可复用的协作方式。
➡️

继续阅读