数据泄露是机器学习中的常见问题,指训练数据中包含不应知晓的信息,导致模型在训练和验证集上表现良好,但在新数据上效果差。文章讨论了三种泄露场景:目标泄露、训练-测试污染和时间序列中的时间泄露,并提供了防止这些问题的策略。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: