💡
原文英文,约5900词,阅读约需22分钟。
📝
内容提要
2023年,我开始使用ChatGPT,最初是无状态的聊天机器人。2024年,升级为可以调用工具和搜索互联网的AI代理。我通过LangChain和LangGraph构建了一个智能的星巴克咖啡师,能够处理订单并保存对话历史。
🎯
关键要点
- 2023年,我开始使用ChatGPT,最初是无状态的聊天机器人。
- 2024年,ChatGPT升级为可以调用工具和搜索互联网的AI代理。
- 我通过LangChain和LangGraph构建了一个智能的星巴克咖啡师,能够处理订单并保存对话历史。
- LLM代理是能够感知环境、做出决策并采取自主行动的软件程序。
- ReAct框架允许LLM接收提示、思考、决定下一步行动并与工具交互。
- LLM代理需要记忆以保持对话的一致性,通常实现短期记忆。
- 我们将构建一个收集订单信息的星巴克咖啡师,并在满足条件后调用创建订单工具。
- 项目使用Nest.js框架,结合MongoDB进行数据持久化。
- 使用Zod库定义饮品和订单的结构化数据模式。
- 数据到文本的总结是将结构化数据转换为可读字符串,以便嵌入提示中。
- 使用MongoDB持久化订单和对话历史,以便在服务器重启后仍能访问。
- LangGraph节点是工作流的基本组件,负责执行特定任务。
- 构建的图形结构确保复杂的状态交互以协调和模块化的方式进行。
- 通过MongoDBSaver实现状态持久化,确保代理能够记住对话上下文。
- 最终构建的AI代理能够处理真实世界的任务,如星巴克咖啡师。
➡️