针对对齐语言模型的对抗攻击的基线防御
原文中文,约500字,阅读约需2分钟。发表于: 。大型语言模型的安全漏洞对其进行了深入理解。最近的研究表明,文本优化器可以产生绕过审核和对齐的越狱提示。我们从对抗机器学习的丰富研究基础中提出三个问题:在这个领域中,哪些威胁模型实际上是有用的?基线防御技术在这个新领域中的表现如何?LLM 安全性与计算机视觉有何不同?我们对 LLM...
最近的研究深入理解了大型语言模型的安全漏洞,发现文本优化器可以绕过审核和对齐的越狱提示。研究提出了三个问题:有用的威胁模型是哪些?基线防御技术在这个新领域中的表现如何?LLM安全性与计算机视觉有何不同?研究评估了几种基线防御策略,并讨论了每种策略的情况。在过滤和预处理方面获得了比其他领域更多成功,这表明在这些领域中可能对这些防御的相对优势进行了不同的权衡。