Airbnb如何以每秒100万事件推动个性化服务

Airbnb如何以每秒100万事件推动个性化服务

💡 原文英文,约2500词,阅读约需9分钟。
📝

内容提要

Agentic AI正在改变企业运作,但构建安全、可审计的大规模AI代理面临挑战。Airbnb的用户信号平台(USP)通过实时处理用户行为,解决了用户旅程的非线性和信号碎片化问题,结合Lambda架构和在线查询层,实现低延迟和高可靠性,推动个性化服务。

🎯

关键要点

  • Agentic AI正在改变企业运作,但构建安全、可审计的大规模AI代理面临挑战。
  • Airbnb的用户信号平台(USP)通过实时处理用户行为,解决了用户旅程的非线性和信号碎片化问题。
  • USP结合Lambda架构和在线查询层,实现低延迟和高可靠性,推动个性化服务。
  • 用户旅程非线性,用户行为信号碎片化,延迟影响实时反应,团队需要洞察。
  • USP能够近实时处理用户行为,存储可查询的实时和历史用户数据,支持同步和异步计算。
  • USP架构分为数据管道层和在线服务层,使用Kafka和Flink等技术。
  • 数据管道层处理原始Kafka事件,将其转化为结构化用户信号并写入版本化KV存储。
  • 在线服务层提供API查询用户信号,确保快速响应。
  • 用户信号的生命周期包括用户行为的事件发出、信号转化和存储。
  • Airbnb选择Flink而非Spark以降低延迟,提升实时个性化体验。
  • 采用追加数据模型简化了重处理和调试,确保数据在故障下的正确性。
  • USP提供配置驱动的开发者工作流,简化信号逻辑的定义和使用。
  • 用户信号类型包括简单用户信号和连接信号,便于实时处理和查询。
  • 用户细分动态更新,基于实时用户行为而非离线数据。
  • 会话参与功能关注用户当前活动,提供实时洞察。
  • Flink的热备份策略提高了系统的操作弹性,确保快速恢复。
  • USP在处理规模上表现出色,每秒处理超过100万事件,支持70K查询每秒。
  • USP的成功在于设计选择,如采用追加数据模型、简化开发者抽象和关注操作弹性。
➡️

继续阅读