本研究提出了一种原型增强框架,旨在解决联邦学习中因领域异质性导致的全局模型收敛问题。通过引入联邦增强原型对比学习(FedAPC),显著提升了模型的泛化能力和稳健性,实验结果表明其性能优于现有技术。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: