创新的基于语音的深度学习方法在帕金森病分类中的应用:一项系统综述
原文中文,约600字,阅读约需2分钟。发表于: 。帕金森病是全球第二常见的神经退行性疾病,人工智能特别是深度学习在语音数据分析方面的显著改进大大提高了帕金森病的诊断,然而研究的进展受到公开可获取的基于语音的帕金森病数据集的限制,主要原因是隐私和伦理方面的考虑。该综述论述了基于深度学习的人工智能方法在语音识别的帕金森病分类方面的最新研究进展,关注性能、可用资源和 2020 年至 2024 年 3 月间发表的 33...
帕金森病的诊断受限于缺乏公开可获取的语音数据集。深度学习方法包括端到端学习、迁移学习和深度声学特征提取。端到端学习方法主要使用卷积神经网络和变压器,但面临数据和计算资源限制。迁移学习可以提供更强大的诊断和跨语言普适性。深度声学特征提取方法的性能较低。未解决的问题包括偏差、可解释性和隐私。需要进一步研究。