机器学习中,不完美的数据是常态。不平衡的数据可能导致模型选择偏差,影响模型性能和公平性。解决不平衡数据问题的方法包括重采样、适当的评估指标、算法调整和数据增强。决策树和集成方法如随机森林和梯度提升可以通过类别加权来处理不平衡数据。综合多种策略可以提高模型性能和公平性。
正在访问的资源需要验证您是否真人。
或在微信中搜索公众号“小红花技术领袖”并关注
第二步:在公众号对话中发送验证码: