EFaR 2023: 高效人脸识别竞赛
原文中文,约400字,阅读约需1分钟。发表于: 。2023 年国际联合生物特征识别学术会议上举行了高效人脸识别竞赛(EFaR),本文总结了该竞赛的概况和参赛解决方案的性能表现,以及一个多样性基准集合的解决方案的性能值和基准值。
本文总结了2020年ChaLearn Looking at People Fair Face Recognition and Analysis Challenge的评测结果和优胜解决方案,并对结果进行了分析。比赛评估了算法在存在混淆因素时的准确性和性别、肤色方面的偏见。共有151个参与者,36个团队进入了最后一轮。其中10个团队在实现非常低的偏见指标的同时,AUC-ROC超过了0.999。参赛者们常用的策略包括面部预处理、数据分布的同质化、使用有偏向性的损失函数和集成模型。前10名团队的分析还表明,对于肤色较暗的女性,虚假阳性率较高,同时,佩戴眼镜和年龄较小也会增加虚假阳性率。