何恺明团队推出了改进版单步生成模型iMF,解决了训练的稳定性和效率问题。在ImageNet测试中,iMF表现优异,FID成绩为1.72,超越多步扩散模型,证明其性能可与之媲美。
华尔街对谷歌TPU的关注引发学术界质疑,认为Meta等公司早已在使用TPU。谷歌与Meta的TPU交易被视为对抗英伟达的策略,但分析认为谷歌的目的不仅是盈利,更是通过合作确保芯片供应。
NeurIPS 2025最佳论文和时间检验奖揭晓,阿里Qwen门控注意力获最佳论文,何恺明的Faster R-CNN获时间检验奖。今年共七篇论文,涉及扩散模型和自监督学习等领域的突破。
何恺明团队的新论文提出扩散模型应聚焦于去噪,直接预测干净图像而非噪声。新架构JiT(Just image Transformers)设计简化,避免复杂组件,实验表明其在高维空间中表现优越,生成质量高。
何恺明在MIT新招募了本科生胡珂雅和博士后李宗宜。胡珂雅专注于AI与脑科学结合,已发表多篇高水平论文;李宗宜是傅里叶神经算子的发明者,研究物理方程的神经网络。他们将为何恺明的“AI for Science”方向贡献力量。
LSTM之父Schmidhuber质疑何恺明是残差学习的奠基人,指出早在1991年,Hochreiter已提出循环残差连接以解决梯度消失问题。他认为ResNet等深度学习成果应归功于早期研究,争论已持续多年。
MIT终身教授何恺明近期加盟谷歌DeepMind,担任兼职杰出科学家。他在计算机视觉领域有重要贡献,提出了ResNet等模型,并与谷歌合作推动生成模型研究。
何恺明的新论文提出了一种名为Dispersive Loss的正则化方法,旨在提升扩散模型的生成效果。该方法无需预训练和数据增强,通过正则化中间表示来增强特征分散性,简化实现并提高生成质量。实验结果显示,Dispersive Loss在多种模型上显著改善生成效果,具有广泛的应用潜力。
《自然》杂志统计了21世纪引用最多的论文,排名第一的是微软的ResNets研究,奠定了深度学习的基础。其他高引用论文包括《随机森林》和《Attention is all you need》。AI领域的论文因其广泛应用和快速发展而被频繁引用。
何恺明与Yann LeCun合作提出了一种新型Transformer架构Dynamic Tanh(DyT),可替代传统归一化层。DyT通过可学习参数实现输入的非线性压缩,实验结果显示其在多项任务中表现优于或等同于传统方法,且无需调整超参数,具有提升训练和推理速度的潜力。
何恺明与LeCun提出的DyT(动态Tanh)模块可替代Transformer中的归一化层,性能相当且加速,已开源。DyT模块仅需9行代码,适用于多种模型,实验表明其在效率和效果上优于传统归一化方法。
何恺明团队提出了一种新方法,将去噪技术与哈密顿神经网络结合,克服了传统机器学习在物理问题上的局限。该方法通过Block-wise哈密顿量设计和掩码建模策略,提升了模型在正向模拟、表征学习和轨迹插值任务中的准确性和鲁棒性。
何恺明等研究者提出的去噪哈密顿网络(DHN)结合物理约束与神经网络的灵活性,旨在克服物理推理中的局限性。DHN能够捕获非局部时间关系,减轻数值误差,并支持多系统建模。实验结果显示,DHN在轨迹预测、物理参数推断和超分辨率插值等任务中表现优异,推动了物理推理的研究进展。
何恺明团队提出的分形生成模型显著提高了计算效率4000倍,实现了高分辨率逐像素图像生成。该模型通过模块化设计和递归调用,能够处理高维非序列数据,展现出在计算机视觉等领域的潜力。
完成下面两步后,将自动完成登录并继续当前操作。