大型语言模型与计算机视觉的融合:简要概述
原文中文,约400字,阅读约需1分钟。发表于: 。近期,大型语言模型(LLMs)与计算机视觉(CV)的交叉领域成为人工智能(AI)领域重要的研究领域,驱动了重大的进展。该综述论文探讨了变压器及其后继者在转换器和大型语言模型中的最新进展,强调了其对视觉变压器和 LLMs 的革命潜力。同时通过对多个领先的付费和开源 LLMs 的性能指标的对比分析,揭示了它们的优势和改进空间,并回顾了 LLMs...
近期,大型语言模型(LLMs)与计算机视觉(CV)的交叉领域成为人工智能(AI)领域重要的研究领域。该综述论文探讨了变压器及其后继者在转换器和大型语言模型中的最新进展,强调了其对视觉变压器和 LLMs 的革命潜力。同时通过对多个领先的付费和开源 LLMs 的性能指标的对比分析,揭示了它们的优势和改进空间,并回顾了 LLMs 如何用于解决视觉相关任务的文献综述。此外,该综述还提供了用于训练 LLMs 的全面数据集合,并为 LLMs 的预训练和下游任务的高性能实现提供了洞见。综述通过强调 LLMs 在 CV 上的深刻交叉,指出了集成和先进 AI 模型的新时代的潜在研究和发展方向。