处理机器学习中类别不平衡数据的5种有效方法
原文英文,约2000词,阅读约需8分钟。发表于: 。Introduction Here’s a something that new machine learning practitioners figure out almost immediately: not all datasets are created equal. It may now seem obvious to you, but had you considered...
本文介绍了处理类别不平衡数据的五种可靠策略:重新采样技术、算法集成方法、调整类别权重、选择适当的评估指标和生成合成样本。作者建议结合多种方法以获得最佳结果。