💡 原文英文,约700词,阅读约需3分钟。
📝

内容提要

微软与NVIDIA推出Dynamo第二部分,旨在提升Azure Kubernetes Service上大语言模型的推理效率。新功能包括自动资源规划和动态扩展,帮助开发者快速配置GPU资源。Dynamo Planner Profiler与基于SLO的Dynamo Planner协同优化GPU分配,以满足流量变化下的服务水平目标。

🎯

关键要点

  • 微软与NVIDIA推出Dynamo第二部分,提升Azure Kubernetes Service上大语言模型的推理效率。
  • 新功能包括自动资源规划和动态扩展,帮助开发者快速配置GPU资源。
  • Dynamo Planner Profiler和基于SLO的Dynamo Planner协同优化GPU分配,解决分散服务中的速率匹配问题。
  • Dynamo Planner Profiler是预部署模拟工具,自动搜索最佳配置,节省GPU利用时间。
  • AI Configurator模式可在20到30秒内模拟性能,帮助团队快速迭代配置。
  • SLO-based Dynamo Planner作为运行时编排引擎,监控集群状态并根据流量变化调整工作负载。
  • 通过航空助手场景展示新功能,系统在流量高峰时快速扩展以维持延迟目标。
  • Dynamo设计将计算密集型和内存绑定任务分配到不同GPU,优化每个阶段的资源。
  • 从手动设置转向自动化的SLO驱动资源管理,降低运行分散推理架构的操作负担。
  • 自动化工具帮助组织管理复杂的多节点GPU设置,支持在流量变化中满足服务水平目标。
➡️

继续阅读