深度模型初始化对成人和儿科胸部 X 射线图像推广的影响揭示
原文中文,约600字,阅读约需2分钟。发表于: 。模型初始化技术在医学计算机视觉中的深度学习模型性能和可靠性的提高至关重要。本研究探讨了三种深度模型初始化技术:Cold-start、Warm-start 和 Shrink and Perturb start,并重点研究了成人和儿科人群的胸部 X 射线影像。我们还提出了新颖的集成方法:F-score-weighted Sequential Least-Squares Quadratic...
本研究探讨了三种深度模型初始化技术,并提出了新颖的集成方法。结果表明,使用 ImageNet 预训练的权重初始化的模型表现出卓越的泛化能力,并且这些模型的权重级别集成在测试过程中具有更高的召回率。因此,本研究强调了使用 ImageNet 预训练权重初始化的好处,尤其是与权重级别的集成一起使用,以创建强大且具有广泛适用性的深度学习解决方案。