💡
原文英文,约1500词,阅读约需6分钟。
📝
内容提要
本文介绍如何使用FastAPI将训练好的机器学习模型封装为HTTP API,包括模型的训练、保存、加载,创建FastAPI应用、输入验证、预测端点和健康检查等步骤。通过FastAPI,用户可以方便地部署模型并进行预测,提高机器学习应用的可用性。
🎯
关键要点
- 本文介绍如何使用FastAPI将训练好的机器学习模型封装为HTTP API。
- 涵盖的主题包括模型的训练、保存、加载,创建FastAPI应用、输入验证、预测端点和健康检查。
- FastAPI简化了模型的部署过程,提供自动API文档和输入数据验证。
- 第一步是训练机器学习模型并保存,示例代码使用线性回归模型。
- 第二步是创建FastAPI应用并加载模型,确保模型在内存中准备好进行预测。
- 第三步是定义模型期望的输入格式,使用Pydantic进行数据验证。
- 第四步是创建预测端点,允许用户发送请求并获取预测结果。
- 第五步是本地运行API,使用Uvicorn启动服务并访问API文档。
- 第六步是使用真实输入测试模型,确保模型能够返回预测结果。
- 第七步是添加健康检查端点,确保API的可用性和稳定性。
- 第八步是创建requirements.txt文件,列出项目依赖,确保环境一致性。
- 结论是FastAPI消除了模型与现实世界之间的摩擦,使模型更易于使用。