从智能工厂到车联网:S3 Tables 双模式写入实战指南

从智能工厂到车联网:S3 Tables 双模式写入实战指南

💡 原文中文,约16000字,阅读约需38分钟。
📝

内容提要

本文介绍了两种将IoT数据写入Amazon S3 Tables的方案:方案一是适合低频批量数据的Lambda + PyIceberg,灵活且成本可控;方案二是适合高频实时数据的IoT Core + Kinesis Firehose,自动扩展且零运维。两者均支持统一数据湖,以满足不同业务需求。

🎯

关键要点

  • 本文介绍了两种将IoT数据写入Amazon S3 Tables的方案。
  • 方案一适合低频批量数据,使用Lambda + PyIceberg,灵活且成本可控。
  • 方案二适合高频实时数据,使用IoT Core + Kinesis Firehose,自动扩展且零运维。
  • 智能工厂场景需要高效的批处理能力,保证数据完整性和事务一致性。
  • 车联网场景需要毫秒级延迟和近实时数据可用性,支持海量设备并发写入。
  • 两种方案均支持统一数据湖,满足不同业务需求。
  • 方案一通过API Gateway接收数据,Lambda函数使用PyIceberg库直接操作S3 Tables。
  • 方案二通过IoT Core管理设备连接,Kinesis Firehose自动批量写入S3 Tables。
  • 选择方案一适合设备数量少、数据采集频率低的场景。
  • 选择方案二适合设备数量多、需要实时数据可用性的场景。
  • 混合方案适合同时运营多条业务线的企业,简化下游分析架构。
  • Amazon S3 Tables提供ACID事务、Schema演化和时间旅行等企业级特性。
  • 最新推出的压缩成本优化功能可将压缩成本降低达90%。
➡️

继续阅读