基于扩散概率模型的深度紫外荧光图像乳腺癌自动检测的深度学习

💡 原文中文,约300字,阅读约需1分钟。
📝

内容提要

本文介绍了一种基于去噪扩散概率模型(DDPM)的简单预训练方法,用于牙科放射图像的语义分割。该方法提高了标签效率,不需要修改架构,与现有的最先进的预训练方法相竞争。

🎯

关键要点

  • 医学放射学分割,尤其是牙科放射学,受标注成本的限制。
  • 提出了一种基于去噪扩散概率模型(DDPM)的简单预训练方法用于语义分割。
  • 该方法在标签效率方面取得了显著的性能。
  • 预训练和下游任务之间不需要架构修改。
  • 利用 DDPM 的训练目标对 Unet 进行预训练,然后在分割任务上微调。
  • 实验结果表明,该方法与现有的最先进的预训练方法相竞争。
➡️

继续阅读