VCC-INFUSE: 半监督学习中准确高效的未标记样本选择
原文中文,约400字,阅读约需1分钟。发表于: 。我们提出了两种方法:Variational Confidence Calibration (VCC) 和 Influence-Function-based Unlabeled Sample Elimination (INFUSE),VCC 是用 Variational Autoencoder 来选择更准确的伪标签,INFUSE 是一种数据修剪方法,在 SSL...
本文介绍了Variational Confidence Calibration (VCC)和Influence-Function-based Unlabeled Sample Elimination (INFUSE)两种方法。VCC使用Variational Autoencoder选择更准确的伪标签,INFUSE是一种数据修剪方法,用于构建无标签样本的核心数据集。这些方法在多个数据集和设置中都非常有效,可以减少分类错误率并节省训练时间。在CIFAR-100数据集上,VCC-INFUSE将FlexMatch的错误率降低了1.08%,同时节省了近一半的训练时间。