💡
原文中文,约9100字,阅读约需22分钟。
📝
内容提要
现代AI和机器学习中的GPU资源管理面临挑战。结合Karpenter和HAMi可实现GPU资源的细粒度分片和动态扩缩容,从而提高资源利用率,降低成本,适用于AI训练和科学计算等场景。
🎯
关键要点
- 现代AI和机器学习中GPU资源管理面临高效利用和动态管理的挑战。
- 传统GPU分配方式导致资源浪费,无法满足多样化的使用需求。
- 结合Karpenter和HAMi可实现GPU资源的细粒度分片和动态扩缩容。
- Karpenter能够快速响应扩容需求,优化成本和资源效率。
- HAMi通过GPU资源分片和多厂商支持解决GPU利用率低的问题。
- Karpenter和HAMi的结合实现了资源利用率和成本的双重优化。
- 扩容和缩容过程中可能遇到资源不匹配和状态异常的问题。
- NodeOverlay和Mock Device Plugin是解决扩缩容问题的关键技术。
- 集成测试方案确保Karpenter和HAMi的有效协同工作。
- 通过集成方案,企业能够显著提升资源利用率、降低成本和简化运维。
- 该方案适用于AI/ML模型训练、科学计算、图形渲染和数据分析等场景。
➡️