迈向绿色和人类智能:当代少样学习方法的综合调查
原文中文,约400字,阅读约需1分钟。发表于: 。深度学习在数据资源和计算资源需求上的局限性使得其在许多数据受限的实际应用中不实用,而 Few-Shot Learning(FSL)旨在通过使其能够快速适应新学习任务来解决这些限制,并在最近几年取得了显著的增长。本综述提供了对该领域最新进展的全面概述,包括 FSL 的定义、与不同学习领域的关系、引入的新分类法以及经典和新领域中的实际应用。在最后,讨论了塑造该领域的最近趋势、突出挑战和有前景的未来研究方向。
深度学习在数据和计算资源需求上的局限性使其在许多数据受限的实际应用中不实用。Few-Shot Learning(FSL)通过快速适应新学习任务来解决这些限制,并在最近几年取得显著增长。本综述提供了对该领域最新进展的全面概述,包括FSL的定义、与不同学习领域的关系、新分类法和实际应用。最后,讨论了该领域的趋势、挑战和未来研究方向。