背景激活抑制用于弱监督物体定位和语义分割
原文中文,约400字,阅读约需1分钟。发表于: 。使用仅有图像级标签的弱监督对象定位和语义分割方法,该论文引入了一个前景预测图(FPM)的新范例,通过生成 FPM 实现像素级定位;通过观察发现,随着前景掩模的扩大,交叉熵收敛为零(当前景仅覆盖对象部分时),激活值持续增加(直至前景掩模扩展到对象边界),因此,提出了一种背景激活抑制(BAS)方法,通过抑制背景激活值来学习更多对象区域;该方法在...
该论文提出了一种使用弱监督对象定位和语义分割方法的新范例,通过生成前景预测图实现像素级定位。同时,提出了一种背景激活抑制方法,通过抑制背景激活值来学习更多对象区域。实验表明,该方法在多个数据集上相较于基线方法有显著和一致的改进效果,并达到最先进的弱监督语义分割性能。