💡
原文英文,约500词,阅读约需2分钟。
📝
内容提要
Airbnb通过工作流自动化和大型语言模型,加速了将3500个React测试文件从Enzyme迁移到React Testing Library的过程。工程师们采用逐步迁移的方法,经过多次重试和调整提示,成功在六周内转换了97%的文件,节省了约1.5年的工程时间。
🎯
关键要点
- Airbnb通过工作流自动化和大型语言模型加速了3500个React测试文件的迁移。
- 工程师们采用逐步迁移的方法,成功在六周内转换了97%的文件。
- 提示工程的效果不如多次重试转换,称为“蛮力”方法。
- 迁移过程分为多个步骤,包括重构Enzyme到RTL、修复Jest测试中的错误、运行linter和TypeScript编译器。
- 这种分步方法为自动化管道提供了坚实基础,能够跟踪进度和提高特定步骤的成功率。
- 迁移过程可以同时处理数百个文件,提高了效率。
- 每个步骤都有重试过程,直到没有验证错误或达到最大重试次数。
- 迁移结束时,提示扩展到40,000到100,000个tokens,涉及多达50个相关文件。
- 简单到中等复杂度的文件在四小时内迁移了75%,但约900个文件需要额外处理。
- 对于复杂文件,采用“采样、调整、清扫”策略,分析失败案例并更新提示。
- 长尾文件需要50到100次重试,导致整体过程变慢,但最终97%的文件在四天内完成转换。
- 利用LLMs进行测试迁移将一个估计1.5年的工程项目缩短至六周,同时保持了原始测试意图和代码覆盖率。
➡️