💡
原文英文,约1000词,阅读约需4分钟。
📝
内容提要
各行业企业迅速采用生成式AI,以提升聊天机器人、自动化和客户体验等应用。然而,LLM推理成本高且不可预测,延迟要求极低。Redis在AWS上提供实时AI架构,降低成本并保持低延迟,支持企业级耐用性和智能。结合Amazon Bedrock,Redis实现快速向量搜索和语义缓存,优化AI应用性能,确保实时数据同步,助力企业构建智能应用。
🎯
关键要点
- 各行业企业迅速采用生成式AI以提升聊天机器人、自动化和客户体验等应用。
- LLM推理成本高且不可预测,延迟要求极低。
- Redis在AWS上提供实时AI架构,降低成本并保持低延迟。
- Redis与Amazon Bedrock结合,实现快速向量搜索和语义缓存,优化AI应用性能。
- Redis支持企业级耐用性和智能,确保实时数据同步。
- Redis与AWS生态系统无缝集成,支持高可用性和全球部署。
- Redis兼容Redis OSS,便于团队迁移,无需重写。
- Amazon Bedrock提供安全、可扩展的基础模型访问,Redis为实时数据层提供支持。
- Redis语义缓存(LangCache)优化生成式AI工作负载,降低成本和延迟。
- Redis数据集成(RDI)确保AI应用与实时业务数据连接。
- Redis增强AWS服务,推动更多AWS资源的使用。
- 未来的AI在AWS上将是实时的、成本高效的,并且由Redis驱动。
➡️