未知管理:开放集合识别与相关领域综述
原文中文,约200字,阅读约需1分钟。发表于: 。本文综述开放集识别领域的最新文献,识别常见实践、限制和与连续学习、分布外检测、新颖性检测和不确定性估计等机器学习研究领域的联系,揭示了开放集识别领域的开放问题,并提出了几个研究方向,以促进和规范未来对更安全的人工智能方法的努力。
本文介绍了一种利用深度神经网络作为端到端开放集分类器的方法,并基于类内数据拆分。作者将给定的数据划分为典型和非典型标准子集,使得在异常类的模拟上更有效,即将开放集识别问题转化为传统的分类问题。此外,作者还提出了一种闭集正则化方法,以保证闭集分类性能,通过五个著名的图像数据集上的实验,也证明了该方法的有效性。