💡 原文英文,约3700词,阅读约需14分钟。
📝

内容提要

本文介绍了一种层次语义数据模型,旨在高效存储和分析连接车辆的时间序列数据。该模型通过多级过滤显著提升分析性能,尤其在自动变道系统的准备状态检测中,能够快速识别相关会话和信号,减少处理时间。基准测试表明,结合运行长度编码(RLE)和液体聚类的方案在查询速度上表现最佳,尽管存储需求增加,但查询速度显著提升。

🎯

关键要点

  • 本文介绍了一种层次语义数据模型,用于高效存储和分析连接车辆的时间序列数据。
  • 该模型通过多级过滤提升分析性能,特别是在自动变道系统的准备状态检测中,快速识别相关会话和信号。
  • 基准测试显示,结合运行长度编码(RLE)和液体聚类的方案在查询速度上表现最佳,尽管存储需求增加。
  • 与梅赛德斯-奔驰合作,基于ASAM标准增强数据模型,推动汽车开发和分析性能。
  • 现代车辆生成大量时间序列数据,挑战在于如何利用这些数据进行预测分析。
  • 层次语义数据模型能够在单个表中表示数万个信号的时间序列数据,提供高效过滤和可扩展性。
  • 核心数据模型由五个表组成,样本表使用运行长度编码(RLE)存储时间序列数据。
  • 梅赛德斯-奔驰利用该数据模型支持车辆开发,通过多级过滤提高数据分析性能。
  • 基准测试评估了不同数据布局和优化策略,液体聚类在查询性能上优于其他方法。
  • 基准结果显示,RLE与液体聚类的结合在运行时间和查询速度上表现最佳。
  • 未来将发布如何将MDF文件转换为新数据模型的解决方案,并介绍数据集治理和数据发现的框架。
➡️

继续阅读