基于 1.3 万个视频片段,北京大学施柏鑫团队联合贝式计算提出全景视频生成框架 PanoWan,兼顾零样本视频编辑
💡
原文中文,约3300字,阅读约需8分钟。
📝
内容提要
全景视频是虚拟现实的重要组成部分,提升用户体验。尽管制作需要专业设备,但生成式视频模型的进展降低了创作门槛。北京大学推出的PanoWan框架,通过纬度感知采样等技术,解决了全景视频生成中的畸变问题,并构建了包含1.3万视频的PanoVid数据集,提升了生成效果和编辑能力。
🎯
关键要点
- 全景视频是虚拟现实的重要组成部分,增强用户体验。
- 制作全景视频通常需要专业设备,限制了创作的广泛性。
- 生成式视频模型的进展降低了全景内容创作的门槛。
- 全景视频生成面临空间特征表征的根本性差异问题。
- 北京大学推出的PanoWan框架解决了全景视频生成中的畸变问题。
- PanoWan采用纬度感知采样技术,降低画面畸变。
- 研究团队构建了包含1.3万视频的PanoVid数据集,提升生成效果。
- PanoWan在文本生成全景视频任务上取得了最佳性能。
- PanoWan具备强大的零样本视频编辑能力,无需额外训练。
- PanoVid数据集汇聚了多个全景视频资源,覆盖多样化场景。
- PanoWan通过纬度和经度层面解决全景视频畸变问题。
- PanoWan在定量和定性评估中表现优异,超越其他方法。
- 研究团队负责人施柏鑫在计算摄像学与计算机视觉领域有显著贡献。
- OpenBayes贝式计算是主要合作者,专注于人工智能服务。
➡️