💡
原文中文,约4000字,阅读约需10分钟。
📝
内容提要
南洋理工大学与普渡大学提出了无分类引导新方法CFG-Zero*,改进了Flow Matching模型的生成效果。该方法通过优化缩放因子和零初始化,提升了图像和视频生成的细节保真度与文本对齐性,已集成至Diffusers和ComfyUI,适用于多种生成任务。
🎯
关键要点
- 南洋理工大学与普渡大学提出了无分类引导新方法CFG-Zero*,改进了Flow Matching模型的生成效果。
- CFG-Zero*通过优化缩放因子和零初始化,提升了图像和视频生成的细节保真度与文本对齐性。
- 该方法已集成至Diffusers和ComfyUI,适用于多种生成任务。
- Flow Matching逐步取代传统的基于随机微分方程的扩散方法,成为主流生成模型的核心方案。
- 传统的Classifier-Free Guidance(CFG)在模型训练不足时容易导致样本偏离真实分布。
- CFG-Zero*通过优化缩放因子和零初始化两项创新机制,提升生成效果。
- 优化缩放因子动态计算有条件速度与无条件速度的内积比值,避免过度引导导致的误差。
- 零初始化将ODE求解器的前K步速度置为零,有效降低初始误差传播。
- CFG-Zero*在多个任务与主流模型上验证了有效性,特别是在图像生成和视频生成任务中表现优异。
- 该方法在开源社区中实现了快速落地,普通开发者与创作者可以轻松体验其带来的提升。
➡️